3 закона сохранения импульса и энергии. Закон сохранения импульса, кинетическая и потенциальные энергии, мощность силы. Столкновение тел. Упругий и неупругий удары

Решение многих практических задач значительно упрощается, если воспользоваться законами сохранения — законом сохранения импульса и законом сохранения и превращения энергии, ведь эти законы можно использовать и тогда, когда силы, действующие в системе, неизвестны. Итак, вспомним виды механической энергии и решим несколько задач на применение законов сохранения.

Вспоминаем о механической энергии

Энергия (от греч. «деятельность») — это физическая величина, которая является общей мерой движения и взаимодействия всех видов материи.

Энергию обозначают символом E (или W). Единица энергии в СИ — джоуль:

В механике мы имеем дело с механической энергией.

механическая энергия — это физическая величина, которая является мерой движения и взаимодействия тел и характеризует способность тел выполнять механическую работу.

Виды механической энергии

Сумма кинетической и потенциальной энергий тела (системы тел) — это полная механическая энергия тела (системы тел): E = E k + E p

Изучая механическую энергию в курсе физики 7 класса, вы узнали о том, что, когда система тел замкнута, а тела системы взаимодействуют друг с другом только силами упругости и силами тяготения, полная механическая энергия системы не изменяется.

В этом состоит закон сохранения и превращения механической энергии, который математически можно записать так:

где E k0 + E p0 — полная механическая энергия системы тел в начале наблюдения; E k + E p — полная механическая энергия системы тел в конце наблюдения.

Вспоминаем алгоритм решения задач на закон сохранения механической энергии

Алгоритм решения задач с применением закона сохранения механической энергии

1. Прочитайте условие задачи. Определите, является ли система замкнутой, можно ли пренебречь действием сил сопротивления. Запишите краткое условие задачи.

2. Выполните пояснительный рисунок, на котором укажите нулевой уровень, начальное и конечное состояния тела (системы тел).

3. Запишите закон сохранения и превращения механической энергии. Конкретизируйте эту запись, используя данные задачи и соответствующие формулы для расчета энергии.

4. Решите полученное уравнение относительно неизвестной величины. Проверьте ее единицу и найдите числовое значение.

5. Проанализируйте результат, запишите ответ.

Закон сохранения механической энергии значительно упрощает решение многих практических задач. Рассмотрим алгоритм решения таких задач на конкретном примере.

Задача 1. Участник аттракциона по бан-джи-джампингу прыгает с моста (см. рисунок).

Какова жесткость резинового каната, к которому привязан спортсмен, если во время падения шнур растянулся от 40 до 100 м? Масса спортсмена 72 кг, начальная скорость его движения равна нулю. Сопротивление воздуха не учитывайте.


Анализ физической проблемы. Сопротивление воздуха не учитываем, поэтому систему тел «Земля — человек — шнур» можно считать замкнутой и для решения задачи воспользоваться законом сохранения механической энергии: в начале прыжка спортсмен имеет потенциальную энергию поднятого тела, в самой низкой точке эта энергия преобразуется в потенциальную энергию деформированного шнура.

Поиск математической модели, решение Выполним рисунок, на котором укажем начальное и конечное положения спортсмена. За нулевой уроень выберем самое низкое положение спортсмена (шнур растянут максимально, скорость движения спортсмена равна нулю). Запишем закон сохранения механической энергии.

Применяем закон сохранения механической энергии и закон сохранения импульса одновременно

Играли ли вы в бильярд? Один из видов столкновения бильярдных шаров — упругий центральный удар — столкновение, при котором потери механической энергии отсутствуют, а скорости движения шаров до и после удара направлены вдоль прямой, проходящей через центры шаров.

Задача 2. Шар, двигавшийся по бильярдному столу со скоростью 5 м/с, сталкивается с неподвижным шаром такой же массы (см. рисунок). Определите скорости шаров после столкновения. Удар считайте упругим центральным.

Анализ физической проблемы. Систему двух шаров можно считать замкнутой, удар упругий центральный, значит, потери механической энергии отсутствуют. Следовательно, для решения задачи можно использовать и закон сохранения механической энергии, и закон сохранения импульса. За нулевой уровень выберем поверхность стола. Поскольку потенциальные энергии шаров до и после удара равны нулю, полная механическая энергия системы равна сумме кинетических энергий шаров.

Запишем для системы двух шаров закон сохранения импульса и закон сохранения механической энергии, учитывая, что v 02 = 0:

Поиск математической модели, решение.Выполним рисунок, на котором укажем положение шаров до и после удара.

Анализ результатов. Видим, что шары «обменялись» скоростями: шар 1 остановился, а шар 2 приобрел скорость шара 1 до столкновения. Заметим: при упругом центральном ударе двух тел одинаковой массы эти тела «обмениваются» скоростяминезависимо от того, какими были начальные скорости движения тел.


Применяем закон сохранения механической энергии и закон сохранения импульса поочередно

Если вам интересно, с какой скоростью вылетает стрела из лука или какова скорость движения пули пневматической винтовки, может помочь баллистический маятник— тяжелое тело, подвешенное на металлических стержнях. Узнаем, как с помощью этого устройства определить скорость движения пули.

Задача 3. Пуля массой 0,5 г попадает в подвешенный на стержнях деревянный брусок массой 300 г и застревает в нем. Определите, с какой скоростью двигалась пуля, если после попадания пули брусок поднялся на высоту 1,25 см (см. рисунок).

Анализ физической проблемы. При попадании пули в брусок последний приобретает скорость. Время проникновения пули в брусок мало, поэтому в это время систему «пуля — брусок» можно считать замкнутой и воспользоваться законом сохранения импульса. А вот законом сохранения механической энергии воспользоваться нельзя, так как присутствует сила трения.

Когда пуля остановила свое движение внутри бруска и он начал отклоняться, то действием силы сопротивления воздуха можно пренебречь и воспользоваться законом сохранения механической энергии для системы «Земля — брусок». А вот импульс бруска будет уменьшаться, поскольку часть импульса передается Земле.

Поиск математической модели, решение Запишем закон сохранения импульса для положений 1 и 2 (см. рисунок), приняв во внимание, что в положении 1 брусок находится в покое, а в положении 2 брусок и пуля движутся вместе:

Запишем закон сохранения механической энергии для положений 2 и 3 и конкретизируем его:

Подставив выражение для скорости (2) в формулу (1), получим формулу для определения скорости движения тела с помощью баллистического маятника:

Проверим единицу, найдем значение искомой величины:

Вместо итогов

Мы рассмотрели лишь несколько примеров решения задач. На первый взгляд кажется, что и импульс, и механическая энергия сохраняются не всегда. Что касается импульса — это не так. Закон сохранения импульса — это всеобщий закон Вселенной. А якобы «появление» импульса

(см. задачу 1 в § 38) и его «исчезновение» (см. задачу 3 в § 38, положения тел 2 и 3) объясняются тем, что Земля тоже получает импульс. Именно поэтому, решая задачи, мы «ищем» замкнутую систему.

Механическая энергия действительно сохраняется не всегда: система может получить дополнительную механическую энергию, если внешние силы выполнят положительную работу (например, вы бросили мяч); система может потерять часть механической энергии, если внешние силы выполнят отрицательную работу (например, велосипед остановился из-за действия силы трения). Однако полная энергия (сумма энергий тел системы и частиц, из которых эти тела состоят) всегда остается неизменной. Закон сохранения энергии — это всеобщий закон Вселенной.

Упражнение № 38

Выполняя задания 2-4, сопротивлением воздуха следует пренебречь.

1. Груз массой 40 кг сбросили с самолета. После того как на высоте 400 м скорость движения груза достигла 20 м/с, он начал двигаться равномерно. Определите: 1) полную механическую энергию груза на высоте 400 м; 2) полную механическую энергию груза в момент приземления; 3) энергию, в которую преобразовалась часть механической энергии груза.

2. Шарик бросили горизонтально с высоты 4 м со скоростью 8 м/с. Определите скорость движения шарика в момент падения. Решите задачу двумя способами: 1) рассмотрев движение шарика как движение тела, брошенного горизонтально; 2) воспользовавшись законом сохранения механической энергии. Какой способ в данном случае удобнее?

3. Пластилиновый шарик 1 массой 20 г и втрое больший по массе шарик 2 подвешены на нитях. Шарик 1 отклонили от положения равновесия на высоту 20 см и отпустили.

Шарик 1 столкнулся с шариком 2 и прилип к нему (рис. 1). Определите: 1) скорость движения шарика 1 до столкновения; 2) скорость движения шариков после столкновения; 3) максимальную высоту, на которую поднимутся шарики после столкновения.

4. Шарик массой 10 г вылетает из пружинного пистолета, попадает в центр пластилинового бруска, подвешенного на нитях, и прилипает к нему. На какую высоту поднимется брусок, если перед выстрелом пружина была сжата на 4 см, жесткость пружины — 256 Н/м, а масса бруска — 30 г?

Экспериментальное задание

«Баллистический маятник». Изготовьте баллистический маятник (рис. 2).

Возьмите бумажную коробку и вылепите из пластилина еще одну коробку, немного меньшую по размеру. Вставьте пластилиновую коробку в бумажную и подвесьте устройство на нитях.

Испытайте устройство, измерив, например, скорость движения шарика детского пружинного пистолета. Для расчетов воспользуйтесь формулой, полученной при решении задачи 3 в § 38.

ЛАБОРАТОРНАЯ РАБОТА № 7

Тема. Изучение закона сохранения механической энергии.

Цель: убедиться на опыте, что полная механическая энергия замкнутой системы тел остается неизменной, если в системе действуют только силы тяжести и силы упругости.

Оборудование: штатив с муфтой и лапкой,

динамометр, набор грузов, линейка длиной 4050 см, резиновый шнур длиной 15 см с указателем и петельками на концах, карандаш, прочная нить.

теоретические сведения

Для выполнения работы можно использовать экспериментальную установку, изображенную на рис. 1. Отметив на линейке положение указателя при ненагруженном шнуре (отметка 0), к петельке шнура подвешивают груз. Груз оттягивают вниз (положение 1), придав шнуру некоторое удлинение (рис. 2). В положении 1 полная механическая энергия системы «шнур — груз — Земля» равна потенциальной энергии растянутого шнура:

где F 1 = kx 1 — модуль силы упругости шнура при его растяжении на x 1 .

Затем груз отпускают и отмечают положение указателя в момент, когда груз достигнет максимальной высоты (положение 2). В этом положении полная механическая энергия системы равна сумме потенциальной энергии поднятого на высоту h груза и потенциальной энергии растянутого шнура:

указания к работе

подготовка к эксперименту

1. Прежде чем приступить к выполнению работы, вспомните:

1) требования безопасности при выполнении лабораторных работ;

2) закон сохранения полной механической энергии.

2. Проанализируйте формулы (1) и (2). Какие измерения следует выполнить, чтобы определить полную механическую энергию системы в положении 1; в положении 2? Составьте план проведения эксперимента.

3. Соберите установку, как показано на рис. 1.

4. Потянув за нижнюю петельку шнура вертикально вниз, выпрямите шнур, не натягивая его. Обозначьте на линейке карандашом положение указателя при ненагруженном шнуре и поставьте отметку 0.

Эксперимент

Строго придерживайтесь инструкции по безопасности (см. форзац).

Результаты измерений сразу заносите в таблицу.

1. Определите с помощью динамометра вес P груза.

2. Подвесьте груз к петельке. Оттянув груз вниз, отметьте на линейке положение 1 указателя, возле отметки поставьте цифру 1.

3. Отпустите груз. Заметив положение указателя в момент, когда груз достиг наибольшей высоты (положение 2), поставьте в соответствующем месте отметку 2. Обратите внимание: если отметка 2 будет выше отметки 0, опыт необходимо повторить, уменьшив растяжение шнура и соответственно изменив расположение отметки 1.

4. Измерьте силы упругости F 1 и F 2 , возникающие в шнуре при его растяжении на x 1 и x 2 соответственно. Для этого снимите груз и, зацепив петельку шнура крючком динамометра, растяните шнур сначала до отметки 1, а затем до отметки 2.

5. Измерив расстояния между соответствующими отметками, определите удлинения x 1 и x 2 шнура, а также максимальную высоту h подъема груза (см. рис. 2).

6. Повторите действия, описанные в пунктах 1-5, подвесив на шнур два груза вместе.

Обработка результатов эксперимента

1. Для каждого опыта определите:

1) полную механическую энергию системы в положении 1;

2) полную механическую энергию системы в положении 2.

2. Закончите заполнение таблицы.

Анализ результатов эксперимента

Проанализируйте эксперимент и его результаты. Сформулируйте вывод, в котором: 1) сравните полученные вами значения полной механической энергии системы в положении 1; в положении 2; 2) укажите причины возможного расхождения результатов; 3) укажите физические величины, измерение которых, на ваш взгляд, дало наибольшую погрешность.

Задание «со звездочкой»

По формуле

эксперимента.

Творческое задание

Возьмите небольшой шарик на длинной прочной нити. К нити привяжите резиновый шнур и закрепите его так, чтобы шарик висел на расстоянии 20-30 см от пола. Потяните шарик вниз и измерьте удлинение шнура. Отпустив шарик, измерьте высоту, на которую он поднялся. Определите жесткость шнура и вычислите данную высоту теоретически. Сравните результат вычисления с результатом эксперимента. В чем возможные причины расхождений?

Это материал учебника

Нить с подвешенным на ней грузом отклонили на угол α и отпустили. На какой угол β отклонится нить с грузом, если при своем движении она будет задержана штифтом, поставленным на вертикали, посередине длины нити?

Ответ

β = arccos(2cosα -1).

1. Тело брошено вертикально вверх со скоростью v 0 = 16 м/с. На какой высоте h кинетическая энергия тела равна его потенциальной энергии?

2. С какой начальной скоростью надо бросить мяч с высоты h , чтобы он подпрыгнул на высоту 2h ? Удар упругий. Сопротивлением воздуха пренебречь.

Ответ

1. h ≈ 6,5 м.

С башни высотой H = 25 м горизонтально брошен камень со скоростью v 0 = 15 м/с. Найти кинетическую (K ) и потенциальную (U ) энергии камня спустя одну секунду после начала движения. Масса камня m = 0,2 кг. Сопротивлением воздуха пренебречь.

Ответ

K = 32,2 Дж; U = 39,4 Дж.

Определить величину кинетической энергии K тела массой 1 кг, брошенного горизонтально со скоростью 20 м/с, в конце четвертой секунды его движения. Принять g =10 м/с 2 .

Ответ

K = 1000 Дж.

Гибкий однородный канат длиной L лежит на гладком горизонтальном столе. Один конец каната находится у края стола. В некоторый момент от небольшого толчка канат начал двигаться, непрерывно соскальзывая со стола. Как зависит ускорение и скорость каната от длины х куска его, свешивающегося со стола? Какова будет скорость каната к моменту, когда он сползет со стола?

Ответ

a = xg /L ; ; .

Канат длиной L переброшен через штырь. В начальный момент концы каната находились на одном уровне. После слабого толчка канат пришел в движение. Определить скорость v каната к моменту, когда он соскользнет со штыря. Трением пренебречь.

Ответ

Конькобежец, разогнавшись до скорости v = 27 км/ч, въезжает на ледяную гору. На какую высоту H от начального уровня въедет конькобежец с разгона, если подъем горы составляет h = 0,5 м на каждые s = 10 м по горизонтали и коэффициент трения коньков о лед k = 0,02?

Ответ

H ≈ 2 м.

Тело массой m = 1,5 кг, брошенное вертикально вверх с высоты h = 4,9 м со скоростью v 0 = 6 м/с, упало на землю со скоростью v = 5 м/с. Определить работу сил сопротивления воздуха.

Ответ

A ≈ -80,2 Дж.

Камень массой 50 г, брошенный под углом к горизонту с высоты 20 м над поверхностью земли со скоростью 18 м/с, упал на землю со скоростью 24 м/с. Найти работу по преодолению сил сопротивления воздуха.

Ответ

A ≈ 3,5 Дж.

Самолет массой m = 10 3 кг летит горизонтально на высоте H = 1200 м со скоростью v 1 = 50 м/с. Затем мотор отключается, самолет переходит в планирующий полет и достигает земли со скоростью v 2 = 25 м/с. Определить среднюю силу сопротивления воздуха при спуске, принимая длину спуска равной 8 км.

Ответ

F ср ≈ 1570 Н.

Тело массой m = 1 кг движется по столу, имея в начальной точке скорость v 0 = 2 м/с. Достигнув края стола, высота которого h = 1 м, тело падает. Коэффициент трения тела о стол k = 0,1. Определить количество теплоты, выделившееся при неупругом ударе о землю. Путь, пройденный телом по столу, s = 2 м.

Ответ

Q ≈ 9,8 Дж.

Прикрепленный к вертикальной пружине груз медленно опускают до положения равновесия, причем пружина растягивается на длину х 0 . На сколько растянется пружина, если тому же грузу предоставить возможность падать свободно с такого положения, при котором пружина не растянута? Какой максимальной скорости v макс достигнет при этом груз? Каков характер движения груза? Масса груза m . Массой пружины пренебречь.

Ответ

2x 0 ; ; колебательный характер движения груза.

Падающим с высоты h = 1,2 м грузом забивают сваю, которая от удара уходит в землю на s = 2 см. Определить среднюю силу удара F ср и его продолжительность τ , если масса груза М = 5·10 2 кг, масса сваи много меньше массы груза.

Ответ

F ср ≈ 3·10 5 Н; τ ≈ 8·10 -3 с.

С горы высотой h = 2 м и основанием b = 5 м съезжают санки, которые затем останавливаются, пройдя по горизонтали путь l = 35 м от основания горы. Найти коэффициент трения.

Ответ

k = 0,05.

Стальной шарик массой m = 20 г, падая с высоты h 1 = 1 м на стальную плиту, отскакивает от нее на высоту h 2 = 81 см. Найти: а) импульс силы, действовавшей на плиту за время удара; б) количество теплоты, выделившееся при ударе.

Ответ

а) p = 0,17 Н·с;

б) Q = 3,7·10 -2 Дж.

Легкий шарик начинает свободно падать и, пролетев расстояние l , сталкивается упруго с тяжелой плитой, движущейся вверх со скоростью u . На какую высоту h подскочит шарик после удара?

Ответ

Воздушный шар, удерживаемый веревкой, поднялся на некоторую высоту. Как изменилась потенциальная энергия системы шар — воздух — Земля?

Ответ

Потенциальная энергия системы шар — воздух — Земля уменьшилась, поскольку при подъеме шара вверх объем, занимаемый шаром, замещается воздухом, имеющим массу, бо льшую, чем шар.

Хоккейная шайба, имея начальную скорость v 0 = 5 м/с, скользит до удара о борт площадки s = 10 м. Удар считать абсолютно упругим, коэффициент трения шайбы о лед k = 0,1, сопротивлением воздуха пренебречь. Определить, какой путь l пройдет шайба после удара.

Ответ

l ≈ 2,7 м.

Тело соскальзывает без трения с клина, лежащего на горизонтальной плоскости, два раза: первый раз клип закреплен; второй раз клин может скользить без трения. Будет ли скорость тела в конце соскальзывания с клина одинакова в обоих случаях, если тело оба раза соскальзывает с одной и той же высоты?

Ответ

Скорость тела в первом случае больше, чем во втором.

Почему трудно допрыгнуть до берега с легкой лодки, стоящей вблизи берега, и легко это сделать с парохода, находящегося на таком же расстоянии от берега?

Ответ

Прыгая с парохода, человек совершает меньшую работу, чем в том случае, когда прыгает с лодки.

Конькобежец массой М = 70 кг, стоя на коньках на льду, бросает в горизонтальном направлении камень массой m = 3 кг со скоростью v = 8 м/с относительно Земли. Найти, на какое расстояние s откатится при этом конькобежец, если коэффициент трения коньков о лед k = 0,02.

Ответ

s ≈ 0,29 м.

Человек стоит на неподвижной тележке и бросает горизонтально камень массой m = 8 кг со скоростью v 1 = 5 м/с относительно Земли. Определить, какую при этом человек совершает работу, если масса тележки вместе с человеком М = 160 кг. Проанализируйте зависимость работы от массы М . Трением пренебречь.

Ответ

A ≈ 105 Дж.

Винтовка массой М = 3 кг подвешена горизонтально на двух параллельных нитях. При выстреле в результате отдачи она отклонилась вверх на h = 19,6 см.

Масса пули m = 10 г. Определить скорость v 1 , с которой вылетела пуля.

Ответ

v 1 ≈ 590 м/с.

Пуля, летевшая горизонтально со скоростью v = 40 м/с, попадает в брусок, подвешенный на нити длиной l = 4 м, и застревает в нем. Определить угол α , на который отклонится брусок, если масса пули m 1 = 20 г, а бруска m 2 = 5 кг.

Ответ

α ≈ 15º.

Пуля, летящая горизонтально, попадает в шар, подвешенный на очень легком жестком стержне, и застревает в нем. Масса пули в n = 1000 раз меньше массы шара. Расстояние от точки подвеса стержня до центра шара l = 1 м. Найти скорость пули v , если известно, что стержень с шаром отклонился от удара пули на угол α = 10°.

Ответ

v ≈ 550 м/с.

Пуля массой m 1 = 10 г, летевшая горизонтально со скоростью v 1 = 600 м/с, ударилась в свободно подвешенный на длинной нити деревянный брусок массой m 2 = 0,5 кг и застряла в нем, углубившись на s = 10 см. Найти силу F с сопротивления дерева движению пули. На какую глубину S 1 войдет пуля, если тот же брусок закрепить.

Ответ

F с ≈ 1,8·10 4 Н; s 1 ≈ 10,2 см.

В покоящийся шар массой М = 1 кг, подвешенный на длинном жестком стержне, закрепленном в подвесе на шарнире, попадает пуля массой m = 0,01 кг. Угол между направлением полета пули и линией стержня равен α = 45°. Удар центральный. После удара пуля застревает в шаре и шар вместе с пулей, отклонившись, поднимается на высоту h = 0,12 м относительно первоначального положения. Найти скорость пули v . Массой стержня пренебречь.

Ответ

v ≈ 219 м/с.

Маятник представляет собой прямой тонкий стержень длиной l = 1,5 м, на конце которого находится стальной шар массой М = 1 кг. В шар попадает летящий горизонтально со скоростью v = 50 м/с стальной шарик массой m = 20 г. Определить угол максимального отклонения маятника, считая удар упругим и центральным. Массой стержня пренебречь.

Ответ

α ≈ 30º.

На нити, перекинутой через блок, подвешены два груза неравных масс m 1 и m 2 . Найти ускорение центра масс этой системы. Решить задачу двумя способами, применяя: 1) закон сохранения энергии и 2) закон движения центра масс. Массами блока и нити пренебречь.

Ответ

.

Молот массой m = 1,5 т ударяет по раскаленной болванке, лежащей на наковальне, и деформирует ее. Масса наковальни вместе с болванкой М = 20 т. Определить коэффициент полезного действия η при ударе молота, считая удар неупругим. Считать работу, совершенную при деформации болванки, полезной.

Ответ

η ≈ 93 %.

Тело массой m 1 ударяется неупруго о покоящееся тело массой m 2 . Найти долю q потерянной при этом кинетической энергии.

Ответ

q = m 2 /(m 1 +m 2).

На передний край платформы массой М , движущейся горизонтально без трения со скоростью v , опускают с небольшой высоты короткий брусок массой m . При какой минимальной длине платформы l брусок не упадет с нее, если коэффициент трения между бруском и платформой k . Какое количество теплоты Q выделится при этом.

Ответ

; .

Телу массой m = 1 кг, лежащему на длинной горизонтальной платформе покоящейся тележки, сообщают скорость v = 10 м/с. Коэффициент трения тела о платформу k = 0,2. Какой путь пройдет тележка к тому моменту, когда тело остановится на ней? Какое количество теплоты выделится при движении тела вдоль платформы? Тележка катится по рельсам без трения, ее масса М = 100 кг.

Ответ

s ≈ 0,25 м; Q ≈ 50 Дж.

Два груза массами m 1 = 10 кг и m 2 = 15 кг подвешены на нитях длиной l = 2 м так, что соприкасаются между собой. Меньший груз был отклонен на угол α = 60° и отпущен. На какую высоту поднимутся оба груза после удара? Удар грузов считать неупругим. Какое количество теплоты при этом выделяется?

Ответ

h ≈ 0,16 м; Q ≈ 58,8 Дж.

Шарик движется между двумя очень тяжелыми вертикальными параллельными стенками, соударяясь с ними по закону абсолютно упругого удара. Одна из стенок закреплена, другая движется от нее с постоянной горизонтальной скоростью u х = 0,5 м/с. Определить число соударений и и окончательную скорость v x шарика, если перед первым соударением со стенкой она была равна v 0x = 19,5 м/с.

Ответ

Число соударений n = 19; v x = 0,5 м/с.

Два шара подвешены на параллельных нитях одинаковой длины так, что они соприкасаются. Массы шаров m 1 = 0,2 кг и m 2 = 100 г. Первый шар отклоняют так, что его центр тяжести поднимается на высоту h = 4,5 см, и отпускают. На какую высоту поднимутся шары после соударения, если удар: а) упругий; б) неупругий?

Ответ

а) h 1 = 5·10 -3 м, h 2 = 0,08 м;

б) H = 0,02 м.

Во сколько раз уменьшится скорость атома гелия после центрального упругого столкновения с неподвижным атомом водорода, масса которого в четыре раза меньше массы атома гелия?

Ответ

n = 5/3.

На шар, лежащий на гладкой горизонтальной поверхности, налетает другой шар такого же радиуса, движущийся горизонтально. Между шарами происходит упругий центральный удар. Построить график зависимости доли переданной энергии от отношения масс шаров α =m 1 /m 2 .

Ответ

.

Для получения медленных нейтронов их пропускают сквозь вещества, содержащие водород (например, парафин). Найти, какую наибольшую часть своей кинетической энергии нейтрон массой m 0 может передать: а) протону (масса m 0); б) ядру атома свинца (масса m = 207 m 0). Наибольшая часть передаваемой энергии соответствует упругому центральному удару.

Ответ

а) 100 %, при упругом столкновении частиц с одинаковой массой происходит обмен скоростями;

Два идеально упругих шарика массами m 1 и m 2 движутся вдоль одной и той же прямой со скоростями v 1 и v 2 . Во время столкновения шарики начинают деформироваться и часть кинетической энергии переходит в потенциальную энергию деформации. Затем деформация уменьшается, а запасенная потенциальная энергия вновь переходит в кинетическую. Найти значение максимальной потенциальной энергии деформации.

Ответ

.

Небольшое тело обтекаемой формы с плотностью ρ 1 падает в воздухе с высоты h на поверхность жидкости с плотностью ρ 2 , причем ρ 1 < ρ 2 . Определить глубину h 1 погружения тела в жидкость, время погружения t и ускорение a . Сопротивлением жидкости пренебречь.

Ответ

; ; .

На нити длиной l подвешен груз массой m . Определить, на какую минимальную высоту надо поднять этот груз, чтобы он, падая, разорвал нить, если минимальный груз массой М , подвешенный на нити и разрывающий ее, растягивает нить в момент разрыва на 1% от ее длины. Принять, что для нити справедлив закон Гука вплоть до разрыва.

Ответ

h мин = 0,01Ml /(2m ).

Определить максимальную дальность полета струи s из шприца диаметром d = 4 см, на поршень которого давит сила F = 30 Н. Плотность жидкости ρ = 1000 кг/м 3 . Сопротивлением воздуха пренебречь (S отв ≪ S порш).

Ответ

s ≈ 4,9 м.

Цилиндр диаметром D заполнен водой и расположен горизонтально. С какой скоростью u перемешается в цилиндре поршень, если на него действует сила F , а из отверстия в дне цилиндра вытекает струя диаметром d ? Трением пренебречь. Силу тяжести не учитывать. Плотность жидкости ρ .

Ответ

.

По гладкому горизонтальному проволочному кольцу могут без трения скользить две бусинки массами m 1 и m 2 . Вначале бусинки были соединены ниткой и между ними находилась сжатая пружина. Нитку пережигают. После того как бусинки начали двигаться, пружинку убирают. В каком месте кольца бусинки столкнуться в 11-й раз? Столкновения бусинок абсолютно упругие. Массой пружины пренебречь.

Ответ

l 1 /l 2 = m 2 /m 1 , где l 1 и l 2 — длины дуг кольца от точки начала движения до точки 11-го соударения.

Протон массой m , летящий со скоростью v 0 , столкнулся с неподвижным атомом массой М , после чего стал двигаться в прямо противоположную сторону со скоростью 0,5 v o , а атом перешел в возбужденное состояние. Найти скорость v и энергию Е возбуждения атома.

Ответ

; .

При распаде неподвижного ядра образуются три осколка массами m 1 , m 2 и m 3 с общей кинетической энергией Е 0 . Найти скорости осколков, если направления скоростей составляют друг с другом углы в 120°.

Ответ

;

;

;

В общем виде:

В неподвижный шар ударяется не по линии центров другой такой же шар. Под каким углом α разлетятся шары, если они абсолютно упругие и абсолютно гладкие?

Ответ

α = 90º.

Два шара А и В с различными неизвестными массами упруго сталкиваются между собой. Шар А до соударения находился в покое, а шар В двигался со скоростью v . После соударения шар В приобрел скорость 0,5 v и начал двигаться под прямым углом к направлению своего первоначального движения. Определить направление движения шара А и его скорость v A после столкновения.

Ответ

v A = 0,66v .

При бомбардировке гелия α -частицами с энергией Е 0 налетающая частица отклонилась на угол φ = 60° по отношению к направлению ее движения до столкновения. Считая удар абсолютно упругим, определить энергии α -частицы W α и ядра W He после столкновения. Энергия теплового движения атомов гелия много меньше E 0 .

Ответ

W α = 1/4 E 0 ; W He = 3/4 E 0 .

Гладкий шарик из мягкого свинца налетает на такой же шарик, первоначально покоящийся. После столкновения второй шарик летит под углом α к направлению скорости первого шарика до столкновения. Определить угол β , под которым разлетаются шары после столкновения. Какая часть кинетической энергии T перейдет при столкновении в тепло Q ?

Ответ

β = arctg(2tgα ); Q /T = ½cos 2 α .

Шар массой m , движущийся со скоростью v , налетает на покоящийся шар массой m /2 и после упругого удара продолжает двигаться под углом α = 30° к направлению своего первоначального движения. Найти скорости шаров после столкновения.

Движение в природе не возникает из ничего и не исчезает – оно передаётся от одного объекта к другому. При определённых условиях, движение в состоянии накапливаться, но, высвобождаясь, обнаруживает своё свойство к сохранению.

Задумывались ли вы когда-нибудь почему:

  • Мяч, летящий с большой скоростью, футболист может остановить ногой или головой, а вагон, движущийся по рельсам даже очень медленно, человек не остановит (масса вагона намного больше массы мяча).
  • Стакан с водой находится на длинной полоске прочной бумаги. Если тянуть полоску медленно, то стакан движется вместе с бумагой. а если резко дернуть полоску бумаги - стакан остается неподвижный. (стакан останется неподвижным из-за инерции - явления сохранения скорости тела постоянной при отсутствии действия на него других тел)
  • Теннисный мяч, попадая в человека, вреда не причиняет, однако пуля, которая меньше по массе, о движется с большой скоростью (600-800 м/с), оказывается смертельно опасной (скорость пули намного болше, чем мяча).

Значит, результат взаимодействия тел зависит и от массы тел и от их скорости одновременно.

Еще великий французский философ, математик, физик и физиолог, основатель новоевропейского рационализма и один из влиятельнейших метафизиков Нового времени ввел такое понятие как "количество движения". Он же высказал закон сохранения количества движения, дал понятие импульса силы.

"Я принимаю, что во Вселенной... есть известное количество движения, которое никогда не увеличивается, не уменьшается, и, таким образом, если одно тело приводит в движение другое, то теряет столько своего движения, сколько его сообщает." Р. Декарт

Декарт, судя по его высказываниям, понимал фундаментальное значение введенного им в XVII веке понятия количества движения - или импульса тела - как произведения массы тела на величину его скорости. И хотя он совершил ошибку, не рассматривая количество движения как векторную величину, сформулированный им закон сохранения количества движения выдержал с честью проверку временем. В начале XVIII века ошибка была исправлена, и триумфальное шествие этого закона в науке и технике продолжается по сию пору.

Как один из основополагающих законов физики, он дал неоценимое орудие исследования ученым, ставя запрет одним процессам и открывая дорогу другим. Взрыв, реактивное движение, атомные и ядерные превращения - везде превосходно работает этот закон. А в скольких самых обиходных ситуациях помогает разобраться понятие импульса, сегодня, мы надеемся, вы убедитесь сами.

Количество движения - мера механического движения, равная для материальной точки произведению её массыm на скорость v. Количество движения mv - величина векторная, направленная так же, как скорость точки. Иногда Количество движения называют ещёимпульсом . Количество движения, в любой момент времени, характеризуется скоростью объекта определённой массы при перемещении его из одной точки пространства в другую.

Импульсом тела (или количеством движения) называют векторную величину, равную произведению массы тела на его скорость:



Импульс тела направлен в ту же сторону, что и скорость тела .

Единицей измерения импульса в СИ является 1 кг·м/с.

Изменение импульса тела происходит при взаимодействии тел, например, при ударах. (Видео "Бильярдные шары). При взаимодействии тел импульс одного тела может частично или полностью передаваться другому телу.

Виды соударений:

Абсолютно неупругий удар - это такое ударное взаимодействие, при котором тела соединяются (слипаются) друг с другом и движутся дальше как одно тело.


Пуля застревает в бруске и далее они движутся как одно целое Кусок пластелина прилипает к стене

Абсолютно упругий удар - это столкновение, при котором сохраняется механическая энергия системы тел.


Шарики после столкновения отскакивают друг от друга в разные стороны Мяч отскакивает от стены

Пусть на тело массой m в течение некоторого малого промежутка времени Δt действовала сила F.

Под действием этой силы скорость тела изменилась на

Следовательно, в течение времени Δt тело двигалось с ускорением

Из основного закона динамики (второго закона Ньютона) следует:

Физическая величина, равная произведению силы на время ее действия , называется импульсом силы :

Импульс силы также является векторной величиной .

Импульс силы равен изменению импульса тела (II закон Ньютона в импульсной форме ):

Обозначив импульс тела буквой p второй закон Ньютона можно записать в виде:

Именно в таком общем виде сформулировал второй закон сам Ньютон. Сила в этом выражении представляет собой равнодействующую всех сил, приложенных к телу.

Для определения изменения импульса удобно использовать диаграмму импульсов, на которой изображаются вектора импульсов, а также вектор суммы импульсов, построенный по правилу параллелограмма.

При рассмотрении любой механической задачи мы интересуемся движением определенного числа тел. Совокупность тел, движение которой мы изучаем, называется механической системой или просто системой.

В механике часто встречаются задачи, когда необходимо одновременно рассматривать несколько тел, движущихся по-разному. Таковы, например, задачи о движении небесных тел, о соударении тел, об отдаче огнестрельного оружия, где и снаряд и пушка начинают двигаться после выстрела, и т. д. В этих случаях говорят о движении системы тел: солнечной системы, системы двух соударяющихся тел, системы «пушка - снаряд» и т. п. Между телами системы действуют некоторые силы. В солнечной системе это силы всемирного тяготения, в системе соударяющихся тел - силы упругости, в системе «пушка - снаряд» - силы, создаваемые пороховыми газами.

Импульс системы тел будет равен сумме импульсов каждого из тел. входящих в систему.

Кроме сил, действующих со стороны одних тел системы на другие («внутренние силы»), на тела могут действовать еще силы со стороны тел, не принадлежащих системе («внешние» силы); например, на соударяющиеся бильярдные шары действует еще сила тяжести и упругость стола, на пушку и снаряд также действует сила тяжести и т. п. Однако в ряде случаев всеми внешними силами можно пренебрегать. Так, при изучении соударения катящихся шаров силы тяжести уравновешены для каждого шара в отдельности и потому не влияют на их движение; при выстреле из пушки сила тяжести окажет свое действие на полет снаряда только после вылета его из ствола, что не скажется на величине отдачи. Поэтому часто можно рассматривать движения системы тел, полагая, что внешние силы отсутствуют.

Если на систему тел не действуют внешние силы со стороны других тел, такая система называется замкнутой.

ЗАМКНУТАЯ СИСТЕМА ЭТО СИСТЕМА ТЕЛ, КОТОРЫЕ ВЗАИМОДЕЙСТВУЮТ ТОЛЬКО ДРУГ С ДРУГОМ .

Закон сохранения импульса.

В замкнутой системе векторная сумма импульсов всех тел, входящих в систему, остается постоянной при любых взаимодействиях тел этой системы между собой.

Закон сохранения импульса служит основой для объяснения обширного круга явлений природы, применяется в различных науках:

  1. Закон строго выполняется в явлениях отдачи при выстреле, явлении реактивного движения, взрывных явлениях и явлениях столкновения тел.
  2. Закон сохранения импульса применяют: при расчетах скоростей тел при взрывах и соударениях; при расчетах реактивных аппаратов; в военной промышленности при проектировании оружия; в технике - при забивании свай, ковке металлов и т.д

Энергетические характеристики движения вводятся на основе понятия механической работы или работы силы.

Если на тело действует сила и тело под действием этой силы перемещается, то говорят, что сила совершает работу.

Механическая работа – это скалярная величина, равная произведению модуля силы, действующей на тело, на модуль перемещения и на косинус угла между вектором силы и вектором перемещения (или скорости).

Работа является скалярной величиной. Она может быть как положительна (0° ≤ α < 90°), так и отрицательна (90° < α ≤ 180°). При α = 90° работа, совершаемая силой, равна нулю.

В системе СИ работа измеряется в джоулях (Дж) . Джоуль равен работе, совершаемой силой в 1 Н на перемещении 1 м в направлении действия силы.

Работа силы, совершаемая в единицу времени, называется мощностью .

Мощность N физическая величина, равная отношению работы A к промежутку времени t, в течение которого совершена эта работа :

В Международной системе (СИ) единица мощности называется ватт (Вт) . Ватт равен мощности силы, совершающей работу в 1 Дж за время 1 с.

Внесистемная единица мощности 1 л.с.=735 Вт

Связь между мощностью и скоростью при равномерном движении :

N=A/t так как A=FScosα тогда N=(FScosα)/t, но S/t = v следовательно

N= F v cos α

В технике используются единицы работы и мощности:

1 Вт·с = 1 Дж; 1Вт·ч = 3,6·10 3 Дж; 1кВт·ч = 3,6·10 6 Дж

Если тело способно совершить работу, то говорят, что оно обладает энергией.

Механическая энергия тела – это скалярная величина, равная максимальной работе, которая может быть совершена в данных условиях.

Обозначается Е Единица энергии в СИ

Механическая работа есть мера изменения энергии в различных процессах А = ΔЕ.

Различают два вида механической энергии – кинетическая Ек и потенциальная Е p энергия.

Полная механическая энергия тела равна сумме его кинетической и потенциальной энергий

Е = Ек + Е p

Кинетическая энергия – это энергия тела, обусловленная его движением.

Физическая величина, равная половине произведения массы тела на квадрат его скорости, называется кинетической энергией тела :

Кинетическая энергия – это энергия движения. Кинетическая энергия тела массой m , движущегося со скоростью равна работе, которую должна совершить сила, приложенная к покоящемуся телу, чтобы сообщить ему эту скорость:

Если тело движется со скоростью , то для его полной остановки необходимо совершить работу

Наряду с кинетической энергией или энергией движения в физике важную роль играет понятиепотенциальной энергии или энергии взаимодействия тел .

Потенциальная энергия энергия тела, обусловленная взаимным расположением взаимодействующих между собой тел или частей одного тела.

Понятие потенциальной энергии можно ввести только для сил, работа которых не зависит от траектории движения тела и определяется только начальным и конечным положениями . Такие силы называются консервативными . Работа консервативных сил на замкнутой траектории равна нулю .

Свойством консервативности обладают сила тяжести и сила упругости . Для этих сил можно ввести понятие потенциальной энергии.

П отенциальная энергия тела в поле силы тяжести (потенциальная энергия тела, поднятого над землёй):

Ep = mgh

Она равна работе, которую совершает сила тяжести при опускании тела на нулевой уровень.

Понятие потенциальной энергии можно ввести и для упругой силы . Эта сила также обладает свойством консервативности. Растягивая (или сжимая) пружину, мы можем делать это различными способами.

Можно просто удлинить пружину на величину x, или сначала удлинить ее на 2x, а затем уменьшить удлинение до значения x и т. д. Во всех этих случаях упругая сила совершает одну и ту же работу, которая зависит только от удлинения пружины x в конечном состоянии, если первоначально пружина была недеформирована. Эта работа равна работе внешней силы A, взятой с противоположным знаком:

где k – жесткость пружины.

Растянутая (или сжатая) пружина способна привести в движение прикрепленное к ней тело, то есть сообщить этому телу кинетическую энергию. Следовательно, такая пружина обладает запасом энергии. Потенциальной энергией пружины (или любого упруго деформированного тела) называют величину

Потенциальная энергия упруго деформированного тела равна работе силы упругости при переходе из данного состояния в состояние с нулевой деформацией.

Если в начальном состоянии пружина уже была деформирована, а ее удлинение было равно x1, тогда при переходе в новое состояние с удлинением x2 сила упругости совершит работу, равную изменению потенциальной энергии, взятому с противоположным знаком:

Потенциальная энергия при упругой деформации – это энергия взаимодействия отдельных частей тела между собой силами упругости.

Если тела, составляющие замкнутую механическую систему , взаимодействуют между собой только силами тяготения и упругости, то работа этих сил равна изменению потенциальной энергии тел, взятому с противоположным знаком:

A = –(Ep2 – Ep1).

По теореме о кинетической энергии эта работа равна изменению кинетической энергии тел:

Следовательно Ek2 – Ek1 = –(Ep2 – Ep1) или Ek1 + Ep1 = Ek2 + Ep2.

Сумма кинетической и потенциальной энергии тел, составляющих замкнутую систему и взаимодействующих между собой силами тяготения и силами упругости, остается неизменной.

Это утверждение выражает закон сохранения энергии в механических процессах. Он является следствием законов Ньютона.

Сумму E = Ek + Ep называют полной механической энергией .

Полная механическая энергия замкнутой системы тел, взаимодействующих между собой только консервативными силами, при любых движениях этих тел не изменяется. Происходят лишь взаимные превращения потенциальной энергии тел в их кинетическую энергию, и наоборот, или переход энергии от одного тела к другому.

Е = Ек + Е p = const

Закон сохранения механической энергии выполняется только тогда, когда тела в замкнутой системе взаимодействуют между собой консервативными силами, то есть силами, для которых можно ввести понятие потенциальной энергии.

В реальных условиях практически всегда на движущиеся тела наряду с силами тяготения, силами упругости и другими консервативными силами действуют силы трения или силы сопротивления среды.

Сила трения не является консервативной. Работа силы трения зависит от длины пути.

Если между телами, составляющими замкнутую систему, действуют силы трения, то механическая энергия не сохраняется. Часть механической энергии превращается во внутреннюю энергию тел (нагревание).

Е полн =Е кин + U

Е кин = mv 2 /2 + Jw 2 /2 – кинетическая энергия поступательного и вращательного движения,

U = mgh – потенциальная энергия тела массы m на высоте h над поверхностью Земли.

F тр = кN – сила трения скольжения, N – сила нормального давления, к – коэффициент трения.

В случае нецентрального удара закон сохранения импульса

Sр i = constзаписывается в проекциях на оси координат.

Закон сохранения момента импульса и закон динамики вращательного движения

SL i = const– закон сохранения момента импульса,

L ос = Jw - осевой момент импульса,

L орб = [rp ] –орбитальный момент импульса,

dL/dt=SM внеш – закон динамики вращательного движения,

М = [rF ] = rFsina – момент силы, F – сила, a - угол между радиусом – вектором и силой.

А = òМdj - работа при вращательном движении.

Раздел механика

Кинематика

Задача

Задача. Зависимость пройденного телом пути от времени даётся уравнением s = A–Bt+Ct 2 . Найти скорость и ускорение тела в момент времени t.

Пример решения

v = ds/dt = -B + 2Ct , a = dv/dt =ds 2 /dt 2 = 2C.

Варианты

1.1. Зависимость пройденного телом пути от времени дается

уравнением s = A + Bt + Ct 2 , где А = 3м, В = 2 м/с, С = 1 м/с 2 .

Найти скорость за третью секунду.

2.1. Зависимость пройденного телом пути от времени дается

уравнением s= A+Bt+Ct 2 +Dt 3 , где С = 0,14м/с 2 и D = 0,01 v/c 3 .

Через сколько времени после начала движения ускорение тела

будет равно 1 м/с 2 .

3.1.Колесо, вращаясь равноускоренно, достигло угловой скорости

20 рад/c через N = 10 оборотов после начала движения. Найти

угловое ускорение колеса.

4.1.Колесо радиусом 0,1 м вращается так, что зависимость угла

j =А +Bt +Ct 3 , где В=2 рад/с и С = 1рад/с 3 . Для точек, лежащих

на ободе колеса, найти через 2 с после начала движения:

1) угловую скорость, 2) линейную скорость, 3) угловое

ускорение, 4) тангенциальное ускорение.

5.1.Колесо радиусом 5 см вращается так, что зависимость угла

поворота радиуса колеса от времени дается уравнением

j =А +Bt +Ct 2 +Dt 3 , где D = 1 рад/с 3 . Найти для точек, лежащих

на ободе колеса изменение тангенциального ускорения за



каждую секунду движения.

6.1.Колесо радиусом 10 см вращается так, что зависимость

линейной скорости точек, лежащих на ободе колеса, от

времени дается уравнением v = At +Bt 2 , где А = 3 см/с 2 и

В = 1 см/с 3 . Найти угол, составляемый вектором полного

ускорения с радиусом колеса в момент времени t = 5с после

начала движения.

7.1.Колесо вращается так, что зависимость угла поворота радиуса

колеса от времени дается уравнением j =А +Bt +Ct 2 +Dt 3 , где

В = 1 рад/с, С =1 рад/с 2 ,D = 1 рад/с 3 . Найти радиус колеса,

если известно, что к концу второй секунды движения

нормальное ускорение точек, лежащих на ободе колеса равно

а n = 346 м/с 2 .

8.1.Радиус вектор материальной точки изменяется со временем по

закону R =t 3 I + t 2 j. Определите для момента времени t = 1 с:

модуль скорости и модуль ускорения.

9.1.Радиус вектор материальной точки изменяется со временем по

закону R =4t 2 I + 3t j +2к. Запишите выражение для вектора

скорости и ускорения. Определите для момента времени t = 2 с

модуль скорости.

10.1.Точка движется в плоскости ху из положения с координатами

х 1 = у 1 = 0 со скоростью v = Ai +Bxj . Определить уравнение

траектории точки у(х) и форму траектории.

Момент инерции

расстоянии L/3 от начала стержня.

Пример решения.

M - масса стержня J = J ст + J гр

L – длина стержня J ст1 = mL 2 /12 – момент инерции стержня

2m – масса грузика относительно его центра. По теореме

Штайнера находим момент инерции

J = ? стержня относительно оси о, отстоящей от центра на расстояние а = L/2 – L/3 = L/6.

J ст = mL 2 /12 + m(L/6) 2 = mL 2 /9.

Согласно принципу суперпозиции

J = mL 2 /9 + 2m(2L/3) 2 = mL 2 .

Варианты

1.2. Определить момент инерции стержня массой 2m относительно оси, отстоящей от начала стержня на расстояние L/4. На конце стержня сосредоточенная масса m.

2.2.Определить момент инерции стержня массой m относительно

оси, отстоящей от начала стержня на расстояние L/5. На конце

стержня сосредоточенная масса 2m.

3.2. Определить момент инерции стержня массой 2m относительно оси, отстоящей от начала стержня на расстояние L/6. На конце стержня сосредоточенная масса m.

4.2. Определить момент инерции стержня массой 3m относительно оси, отстоящей от начала стержня на расстояние L/8. На конце стержня сосредоточенная масса 2m.

5.2. Определить момент инерции стержня массой 2m относительно оси, проходящей через начало стержня. К концу и середине стержня прикреплены сосредоточенные массы m.

6.2. Определить момент инерции стержня массой 2m относительно оси, проходящей через начало стержня. К концу стержня прикреплена сосредоточенная масса 2m, а к середине прикреплена сосредоточенная масса 2m.

7.2. Определить момент инерции стержня массой m относительно оси, отстоящей от начала стержня на L/4. К концу и середине стержня прикреплены сосредоточенные массы m.

8.2. Найти момент инерции тонкого однородного кольца массы m и радиусом r относительно оси, лежащей в плоскости кольца и отстоящей от его центра на r/2.

9.2. Найти момент инерции тонкого однородного диска массы m и радиусом r относительно оси, лежащей в плоскости диска и отстоящей от его центра на r/2.

10.2. Найти момент инерции однородного шара массы m и радиусом

r относительно оси, отстоящей от его центра на r/2.

Энергия и импульс являются важнейшими понятиями физики. Оказывается, что вообще в природе законы сохранения играют важную роль. Поиск сохраняющихся величин и законов, из которых они могут быть получены, – предмет исследований во многих разделах физики. Выведем эти законы простейшим способом из второго закона Ньютона.

Закон сохранения импульса. Импульс , или количество движения p определяется как произведение массы m материальной точки на скорость V : p = m V . Второй закон Ньютона с использованием определения импульса записывается в виде

= d p = F , (1.3.1)

здесь F – равнодействующая приложенных к телу сил.

Замкнутой системой называют систему, в которой сумма внешних сил, действующих на тело равна нулю:

F = å F i = 0 . (1.3.2)

Тогда изменение импульса тела в замкнутой системе по второму закону Ньютона (1.3.1), (1.3.2) составляет

d p = 0 . (1.3.3)

В этом случае импульс системы частиц остается постоянной величиной:

p = å p i = const . (1.3.4)

Это выражение представляет собой закон сохранения импульса , который формулируется так: когда сумма внешних сил, действующих на тело или систему тел, равна нулю, импульс тела или системы тел является постоянной величиной.

Закон сохранения энергии. В обыденной жизни под понятием «работа» мы понимаем всякий полезный труд человека. В физике же изучается механическая работа , которая совершается, только когда тело перемещается под действием силы. Механическая работа ∆A определяется как скалярное произведение силы F , приложенной к телу, и перемещения тела Δr в результате действия этой силы:

AA = (F , Δr ) = F Ar cosα. (1.3.5)

В формуле (1.3.5) знак работы определяется знаком cos α.

Желая передвинуть шкаф, мы с силой на него надавливаем, но если он при этом в движение не приходит, то механической работы мы не совершаем. Можно представить себе случай, когда тело движется без участия сил (по инерции),

в этом случае механическая работа также не совершается. Если система тел может совершить работу, то она обладает энергией.

Энергия представляет собой одно из важнейших понятий не только в механике, но и в других областях физики: термодинамике и молекулярной физике, электричестве, оптике, атомной, ядерной и физике частиц.

В любой системе, принадлежащей физическому миру, энергия сохраняется при любых процессах. Меняться может лишь форма, в которую она переходит. Например, при попадании пули в кирпич часть кинетической энергии (причем, бóльшая) переходит в тепло. Причина этого – наличие силы трения между пулей и кирпичом, в котором она двигается с большим трением. При вращении ротора турбины механическая энергия превращается в электрическую энергию, а при этом в замкнутой цепи возникает ток. Энергия, выделяющаяся при сжигании химического топлива, т.е. энергия молекулярных связей, превращается в тепловую энергию. Природа химической энергии – это энергия межмолекулярных и межатомных связей, по сути, представляющая собой молекулярную или атомную энергию.

Энергия – скалярная величина, характеризующая способность тела совершить работу:

E2- E1= ∆A. (1.3.6)

При совершении механической работы энергия тела переходит из одной формы в другую. Энергия тела может быть в форме кинетической или потенциальной энергии.

Энергию механического движения

W кин = .

называют кинетической энергией поступательного движения тела. Работа и энергия в системе единиц СИ измеряется в джоулях (Дж).

Энергия может быть обусловлена не только движением тел, но и их взаимным расположением и формой. Такую энергию называют потенциальной .

Потенциальной энергией обладают друг относительно друга два груза, соединенные пружиной, или тело, находящееся на некоторой высоте над Землей. Этот последний пример относится к гравитационной потенциальной энергии, когда тело перемещается с одной высоты над Землей на другую. Она вычисляется по формуле